Immunotherapy- What is in the Future?

Dr. Quincy Chu MD FRCPC Medical Oncologist/Associate Professor Cross Cancer Institute/University of Alberta Nov 26 2019

Disclosure

Abbvie Astra Zeneca Boehringer Ingelheim Bristol Myers Squibb Eli Lilly Eisai Merck Novartis Pfizer Roche Takeda

Research Funding:

Astra Zeneca

DSMB

EMD Sereno/Merck KgAa Princess Margaret Cancer Centre **Advisory Board and Honorarium:**

Agenda

- Review of novel immunotherapy targets in mesothelioma
 - Mesothelin
 - Tumour associated macrophages, myeloid derived suppressor cells and Treg
 - Immune checkpoint including PD(L)1.

Mesothelin

- Mesothelin is 40 KDa glycoprotein expressed in
 - Mesothelioma
 - Adenocarcinoma of the lung
 - Pancreatic cancer
 - Ovarian cancer
 - Gastric cancer.
 - Limited expression in normal cells, including pleura, peritoneum and pericardium
 - Of unknown biological function
 - A 32KDa cleavage NH2-terminal of unknown function.

Hassan R et al. Clin Cancer Res 2004;10:3937-3942.

Mesothelin

 Soluble mesothelin is a 41-45 KDa with NH2-terminal amino acid sequence identical to that of the membrane-bound portion of mesothelin.

Author (waar)	Treatment (no of patients)	Outcomo mossuro	Throshold for SM change	Posulta
Hooper et al (2015)	P/C – 58, BSC – 15	Mod RECIST CT OS, TTP	0%	Chemotherapy group; a falling serum SM at 6–8 weeks was associated with longer time to progression (P <0.001), and a falling SM post chemotherapy was associated with improved OS (P =0.031)
Hassan <i>et al</i> (2014)	P/C and Im – 20	Mod RECIST CT	15%	Fall in serum SM correlated with radiological response with 70% accuracy ($P = 0.003$)
Nowak <i>et al</i> (2013)	Bio – 53	Mod RECIST CT FDG-PET OS, TTP	0%	Median change in serum SM correlated with sum change in tumour bulk on FDG-PET (P <0.05). % change in serum SM was associated with TTP (P <0.001) but not OS
Franko et al (2012)	G/C – 56, P/C – 8, BSC – 4, Surg – 10	Mod RECIST CT	n/a	Significantly lower mean serum SM in partial response or stable disease compared to progressive disease ($P=0.001$)
Hollevoet <i>et al</i> (2011)	P/C – 57, Surg – 5	Mod RECIST CT	15%	Partial response to chemotherapy correlated with a 34% fall in SM (P =0.010) compared with a 54% rise in progressive disease (P <0.001)
Creaney <i>et al</i> (2011)	Chemo – 61, BSC – 25, Surg – 8	Mod RECIST CT FDG-PET OS	25%	Chemotherapy group; correlation between change in serum SM and CT (P =0.023) and FDG-PET (P <0.001) Also, a falling SM was associated with better OS (19 months) compared with static (13 months) or rising levels (15 months). (P =0.001)
Wheatley-Price <i>et al</i> (2010)	Chemo – 21, BSC – 13, Surg – 8	Mod RECIST CT RECIST CT CT report	10% or 5 nmol l ⁻¹	Chemotherapy and BSC groups; relative change in serum SM from baseline significantly associated with disease progression (P<0.010)
Grigoriu et al (2009)	Chemo – 20, lm – 16, BSC – 4	Mod RECIST CT	10%	In patients with raised SM at baseline (>1 nM1 ⁻¹), rising level correlated with progressive disease in 12 out of 16 patients. OS higher in patients with stable SM compared with increasing (P =0.012)

Abbreviations: Bio=biological therapy; BSC=best supportive care; C=cisplatin; Chemo=chemotherapy (not specified); G=gemcitabine; Im=immunotherapy; Mod RECIST CT=modified response evaluation criteria in solid tumors CT; OS=overall survival; P=pemetrexed; Surg=surgery; TTP=time to progression.

Mesothelin- antibody drug conjugate

NAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

16TH WORLD CONFERENCE ON LUNG CANCER SEPTEMBER 6-9, 2015 DENVER, COLORADO, USA

Anetumab ravtansine (BAY 94-9343): an anti-mesothelin antibody-drug conjugate

 Mesothelin is a membrane-associated differentiation antigen that is overexpressed in a number of solid tumors, including the vast majority of mesotheliomas^{1,2}

 Anetumab ravtansine (BAY 94-9343) is a novel, fully humanized antimesothelin immunoglobulin G1 antibody conjugated to a ravtansine, a maytansine-derivative DM4 anti-tubulin cytotoxic agent

Mode of action:

 Targeted delivery of the potent anti-proliferative toxophore DM4 (tubulin inhibitor) to cancer cells expressing the tumor-associated antigen mesothelin

Here we report results from a Phase I open-label study of anetumab ravtansine in patients with advanced solid tumors, with a particular focus on patients with mesothelioma

PK, pharmacokinetics

1. Hassan et al. Clin Cancer Res 2004; 10: 3937-3942; 2. Hassan, Ho. Eur J Cancer 2008; 44: 46-53

IASLC 18TH WORLD CONFERENCE ON LUNG CANCER October 15–18, 2017 | Yokohama, Japan

WWW.IASLC.ORG

Randomized Phase II Study of Anetumab Ravtansine or Vinorelbine in Patients with Malignant Pleural Mesothelioma

<u>HL Kindler</u>,¹ S Novello,² D Fennell,³ G Blumenschein, Jr.,⁴ A Bearz,⁵ GL Ceresoli,⁶ JG Aerts,⁷ J Spicer,⁸ P Taylor,⁹ A Greystoke,¹⁰ K Nackaerts,¹¹ L Calabrò,¹² S Burgers,¹³ R Jennens,¹⁴ AF Sporchia,¹⁵ A Walter,¹⁶ J Siegel,¹⁷ BH Childs,¹⁷ C Elbi,¹⁷ R Hassan¹⁸

¹University of Chicago, Chicago, IL, USA; ²University of Turin, San Luigi Hospital, Orbassano, Italy; ³University of Leicester and Leicester University Hospitals, Leicester, UK; ⁴The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁵IRCCS Centro di Riferimento Oncologico – CRO, Pordenone, Italy; ⁶Cliniche Humanitas Gavazzeni, Bergamo, Italy; ⁷Erasmus Medisch Centrum, Rotterdam, Netherlands; ⁸King's College London, Guy's Hospital, London, UK; ⁹University Hospital of South Manchester, Manchester, UK; ¹⁰Freeman Hospital, Newcastle Upon Tyne, UK; ¹¹KU Leuven, University Hospitals, Leuven, Belgium; ¹²University Hospital of Siena, Siena, Italy; ¹³Nederlands Kanker Instituut, Amsterdam, Netherlands; ¹⁴Epworth Healthcare, Richmond, Victoria, Australia; ¹⁵Bayer, Milan, Italy; ¹⁶Bayer AG, Berlin, Germany; ¹⁷Bayer HealthCare Pharmaceuticals, Whippany, NJ, USA; ¹⁸National Cancer Institute, Bethesda, MD, USA.

Trial Design

R

Α

Ν

D

0

Μ

L

Ζ

Α

0

Ν

2:1

N=248

Patient selection criteria

- Unresectable/ metastatic MPM
- One prior line of chemotherapy
- Mesothelinoverexpression (≥30% of cells medium and strong) by central lab
- ECOG PS 0-1
- Age ≥18 years
- No/mild corneal epitheliopathy

Anetumab ravtansine 6.5 mg/kg Q3W (n=166)

- Stratification factors:
- Geographical region
- TTP on 1L therapy

Vinorelbine 30 mg/m² QW (n=82)

Endpoints

Primary

 PFS (central review; HR 0.50, 90% power)

Secondary

- OS
- Response (ORR, DCR, DOR)
- PROs
- Safety and tolerability
 Other
- Pharmacokinetics
- Immunogenicity
- Biomarkers

1L, first line; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; ORR, objective response rate; OS, overall survival; PROs, patient-reported outcomes; Q3W, once every 3 weeks; QW, once weekly; TTP, time to progression.

Primary Endpoint: PFS

AR, anetumab ravtansine; CI, confidence interval; mPFS, median progression-free survival; V, vinorelbine.

OS – Interim Analysis*

mOS, median overall survival; NE, not estimable.

*87 of 159 target events for OS analysis had occurred at the time of primary PFS analysis.

Response

Best overall response, n (%)	Anetumab ravtansine (n=166)	Vinorelbine (n=82)
Complete response	0 (0)	0 (0)
Partial response	14 (8)	5 (6)
Stable disease	108 (65)	51 (62)
Progressive disease	24 (14)	9 (11)
Not available	20 (12)	17 (21)
Overall response rate	14 (8)	5 (6)
Disease control rate	122 (73)	56 (68)

ORR = CR + PR; DCR = CR + PR + SD. CR, complete response; PR, partial response; SD, stable disease.

Most Frequent Treatment-Emergent Adverse Events

	Anetumab ravta	nsine (n=163)	Vinorelbine (n=72)		
TEAE, %	Any grade	Grade 3–4	Any grade	Grade 3–4	
Nausea	41.1	0	31.9	0	
Corneal epitheliopathy	39.3	1.8	0	0	
Fatigue	35.0	4.3	30.6	5.6	
Decreased appetite	34.4	1.8	23.6	2.8	
Diarrhea	33.1	2.5	18.1	1.4	
Vomiting	20.9	0	6.9	0	
Asthenia	20.2	4.3	22.2	1.4	
Dyspnea	19.6	4.3	29.2	4.2	
Chest pain	17.2	2.5	15.3	1.4	
Constipation	16.0	0.6	48.6	1.4	
Peripheral neuropathy	15.3	3.7	6.9	0	
Fever	14.1	0.6	18.1	1.4	
Anemia	9.2	1.8	27.8	6.9	
Neutropenia	2.5	0.6	51.4	38.9	

≥15% in either cohort. Three patients in the anetumab ravtansine group and 10 patients in the vinorelbine group did not receive study drug and were not included in the safety population.

BMS-986148, an Anti-Mesothelin Antibody-Drug Conjugate (ADC), Alone or in Combination with Nivolumab Demonstrates Clinical Activity in Patients with Select Advanced Solid Tumors

- Traditional cancer chemotherapy is often accompanied by systemic toxicity to the patient
 - Antibody–drug conjugates (ADCs) use antibodies to deliver a potent cytotoxic compound selective to tumor cells, thus improving the therapeutic index of chemotherapeutic agents⁵
- BMS-986148 is a fully human IgG1 anti-mesothelin monoclonal ab conjugated to tubulysin to promote selective cytotoxic delivery to tumor cells
 - Tubulysins disrupt microtubule assembly, leading to impaired cell division and subsequent apoptosis⁶
 - In preclinical models, combination of anti–mesothelin-tubulysin with anti–PD-1 promoted a synergistic antitumor response and influx of tumor-infiltrating lymphocytes⁷
- Here, we present initial data for BMS-986148 ± nivolumab (NIVO; anti–PD-1) from a phase 1/2a trial in a biomarker-defined population of patients (pts) with select advanced solid tumors (NCT02341625)⁸

Study Design

Best Overall Response

		Combination				
	All Escalation (n = 45)	All Expansion (n = 51)	Meso Expansion (n = 25)	Ovarian Expansion (n = 22)	All (n = 30)ª	Meso (n = 13) ^b
ORR, n (%) [95% Cl]	1 (2) ^c [NA]	3 (6) ^d [1, 16]	1 (4) [0, 20]	2 (9) [1, 29]	6 (20) [NA]	3 (23) ^e [5, 54]
Best overall response, n (%)						
CR	0	0	0	0	0	0
PR	1 (2)	3 (6)	1 (4)	2 (9)	6 (20)	3 (23)
SD	12 (27)	24 (47)	12 (48)	11 (50)	13 (43)	8 (61.5)
PD	27 (60)	16 (31)	8 (32)	6 (27)	6 (20)	1 (8)
Not evaluable	0	0	0	0	0 (0)	0
Not reported	5 (11)	8 (16)	4 (16)	3 (14)	5 (17)	1 (8)
DCR, n (%)	13 (29)	27 (53)	13 (52)	13 (59)	19 (63)	11 (85)
PFS, median, mo [95%Cl]	NA	3 [2, 4]	4 [1, 9]	3 [1, 4]	NA	7 [3, 12]

CR, complete response; DCR, disease control rate; NA, not available; ORR, overall response rate; PFS, progression-free survival; PR, partial response; SD, stable disease.

^aIncludes patients from dose escalation and expansion groups. ^bIncludes only patients from expansion group. An additional n=3 mesolthelioma patients were treated in escalation, with n=2 reporting a confirmed partial response lasting 9.69 and 10.41 months, respectively. ^cN=1 with mesothelioma assigned to 0.8 mg/kg Q3W had a confirmed partial response lasting 10.22 months. ^dORR was 0% for NSCLC. ^eMean ORR was 31% with combo in escalation and expansion cohorts with mesothelioma (n= 16).

Treatment-Related Adverse Events

	Mono Q3W ^a (n = 84)		Mono QW ^{a,b} (n = 12)		Combo Q3W (n = 30)	
	Any Gr	Gr 3-4	Any Gr	Gr 3-4	Any Gr	Gr 3-4
Any TRAE, n (%)	72 (86)	42 (50)	11 (92)	3 (25)	27 (90)	10 (33)
TRAEs in ≥ 10% of all pts, n (%)						
AST increased	41 (49)	20 (24)	4 (33)	1 (8)	9 (30)	1 (3)
ALT increased	39 (46)	17 (20)	5 (42)	2 (17)	8 (27)	1 (3)
Fatigue	34 (40)	6 (7)	5 (42)	0	8 (27)	0
Nausea	27 (32)	0	2 (17)	0	7 (23)	0
Decreased appetite	22 (26)	1 (1)	2 (17)	0	4 (13)	0
Blood alkaline phosphatase increased	20 (24)	5 (6)	1 (8)	0	2 (7)	0
Diarrhea	14 (17)	2 (2)	2 (17)	0	2 (7)	0
Vomiting	15 (18)	0	0	0	2 (7)	0
Abdominal pain	11 (13)	1 (1)	2 (17)	0	2 (7)	0
Pleuritic pain	9 (11)	2 (4)	2 (17)	1 (8)	3 (10)	1 (3)
Dyspnea	10 (12)	2 (2)	2 (17)	0	0	0
Dysgeusia	6 (7)	0	3 (25)	0	3 (10)	0
TRAEs leading to treatment discontinuation, n (%)	15 (18)	11 (13)	0	0	4 (13)	3 (10)

- Serious TRAEs were reported in 15 patients (18%) in the mono Q3W group, 2 patients (17%) in the mono QW group, and 7 patients (23%) in the combination group
- One treatment-related death occurred in the mono Q3W group (1.2 mg/kg Q3W; pneumonitis)
- The majority of ophthalmic AEs were mild and manageable with topical treatments when indicated:
 - One subject in the mono Q3W group (1.2 mg/kg Q3W) experienced Grade 3 keratopathy and Grade 3 reduced visual acuity
 - One subject in the mono Q3W group (1.2 mg/kg Q3W) experienced Grade 3 cataracts (left and right eyes)

Mesothelin antibody drug conjugate

- Other agents in development:
 - LMB-100:
 - Mesothelin antibody with an immunotoxin.

Mesothelin CAR-T cell Therapy

CAR T-cell Therapy

Image of courtesy of the National Cancer Institute

Tumour Associated Macrophages and Myeloid Derived Suppressor Cells

- T-regs, myeloid derived suppressor cells and tumour associated macrophages in the tumour stroma induce CD8 cells apoptosis and tolerance.
- TAMs can be divided into 2 groups:
 - M1 in the tumour islets:
 - Anti-tumour
 - Induces TH1 response.
 - M2 in the tumour stroma:
 - Promotes scavenging of debris
 - Promotes angiogenesis
 - Remodels and repairs.
 - High expression of
 - Cytokines: IL-10, CCL17, CCL22 and CCL2
 - MMP
 - CD206 (mannose receptor), CD163 (scavenger receptor), and galactose type receptor
 - Loss of antigen presentation function.
 - 1. Lievense et al. Lung Cancer 2013;80:250-62.

Tumour Associated Macrophages and Myeloid Derived Suppressor Cells

- Ujiie et al. examined 8 infiltrating immune cells and 5 cytokines and receptors in tumours and stroma:
 - Univariate analysis found
 - High CD4 T cell and CD20 B-Cell are associated with good prognosis
 - High IL-17R on CD8 T cell is associated with poor prognosis.
 - Multivariate analysis found
 - CD20 (Mature B-cell) is associated with good prognosis
 - High CD163 (M2) is associated with poor prognosis.
 - TAMs lead to increase IL10 and B7-H3 expression on tumour cells which inhibit T-cell immune response.^{1, 2}

Tumour Associated Macrophages and Myeloid Derived Suppressor Cells

- In hypoxic environment, M1 is converted to M2, leading to angiogenesis and lymphogenesis via VEGF and MMP-9 overexpression.
- Mesothelioma cells secrete prostaglandin E2 which activates macrophages to M2 and, in turn, leads to differentiation of T-cell to T-reg and decrease in CD8 cells proliferation.^{1, 2, 3}

- 1. Lievense et al. JTO 2016;11:1755-64
- 2. Izzi et al. Cancer Lett 2012;322:18-34
- 3. Izzi et al. Int J Oncol 2009;34:543-50

Tumour Associated Macrophages and Myeloid Derived Suppressor Cells

CD47 or SIRP-alpha:

 Inhibition of CD47 or SIPR-alpha leads to activation of M1, and anti-tumour activity.¹

Tumour Associated Macrophages and Myeloid Derived Suppressor Cells

- CSF-1:
 - Responsible for recruitment of TAMs and MDSC
 - Inhibition of CSF-1 leads to reprogramming of TAMs and thus anti-tumour inflammatory response and CD8 activation.¹

Tumour Associated Macrophages and Myeloid Derived Suppressor Cells

• IL6/IL6-R and STAT3

- Responsible for MDSC proliferation, increase in Treg, decrease in CD8 cells and maturation of dendritic cell.¹
- Increase in PDL-1 expression on tumour cells and Treg
- Increase in IDO1 and thus kynurenine and other immunosuppressive secretory factors: Arginine and adenosine^{1,2,3}
- Associated with increase phosphoesterase 5 expression.⁴

- Chen MF et al. Oncotarget 2014;5:8716-28.
- Yu et al. K Immunol 2014;193:2574-86.
- Isiam BN et al. Cancer Prev Res 2017;10:377-388
- 5. Ferguson J Neuro-Oncol 2015; 123:381-394.

Tumour Associated Macrophages and Myeloid Derived Suppressor Cells-

- CCR5:
 - Increase in CCR5 expression on MDSC by upregulation of CCR5 ligands, IL6, GM-CSF and other inflammatory factors and increase infiltration of MDSC.¹
 - Important for Treg differentiation and its migration to inflammatory sites²
 - Increase resistance to DNA damaging agents and thus increase in metastases and stemness of cancer cells.²

^{1.} Umansky et al. Cancer Immunol Immunother 2017;60:1015-23

^{2.} Jiao X et al. Cancer Res 2019;79:4801-7.

Immune Checkpoints

PD1/PDL-1 and Chemotherapy

Chemotherapy can promote tumor immunity in two major ways

- 1. Inducing immunogenic cell death as part of its intended therapeutic effect
- 2. Disrupting strategies that tumors use to evade the immune response

TL, CD8 cytotoxic T lymphocyte; MDSC, myeloid-derived suppressor cell; NK, natural killer; TAM, tumor-associated macrophage

Lorenzo Galluzzi et al, cancer Immuno Res 2016

IND 227 Trial Schema

- This is an academic open-label, multicentre, phase II randomized study in patients with malignant pleural mesothelioma (MPM) receiving first-line treatment for incurable advanced or metastatic disease.
- Patients will be stratified by histological subtype (epithelioid vs. other histology).
 PD-L1 tumour status will be used retrospectively at the time of clinical outcome analysis.

Phase 3

Primary Objective

To evaluate whether pembrolizumab improves overall survival when added to standard chemotherapy in malignant pleural mesothelioma compared to standard chemotherapy.

Secondary Objectives

- To evaluate the tolerability of pembrolizumab, alone and given to patients receiving standard chemotherapy.
- To assess antitumour activity of pembrolizumab given to patients receiving standard chemotherapy.
- To evaluate whether pembrolizumab improves progression-free survival when added to standard chemotherapy.
- To evaluate the quality of life impact of pembrolizumab given to patients receiving chemotherapy.
- To explore predictive and prognostic value of PDL-1 expression and presence of T-cells subsets within the tumour microenvironment.
- To explore health economics when adding pembrolizumab to standard chemotherapy.

Exploratory Objective

- To explore predictive and prognostic value of exploratory blood based biomarkers.
- To explore predictive and prognostic value of other immune cells in tumour microenvironment.

First IND International Phase 2/3 Trial

Marilina Piccirillo, Napoli

Laurent Greillier, Marseille

Dean Fennell, Leister

CD40

Activation and Class-switching of B-cells

- 1.
- 2. Hores et al. J Exp Med 2018;215:859-76
- Jackaman C et al. Immunol Cell Biol 2011;89:255-67. 3.
- 4. Jackaman et al. Int Immunol 2012; 245:357-68.

Immune Checkpoints

- Salaroglio et al. demonstrated increase in
 - Treg and MDSC (granulocyte or macrophage derived) which is a negative predictor for PFS and OS
 - Increase in LAG3 and TIM3 expression on CD8 cells associated to negative OS.
 - MHC1 mutation in 59% of mesothelioma associated dendritic cells or antigen presenting cells.¹
- B7-H3:
 - A member of B7 family, which interacts with CD28 family molecules such as PD1, CD28, CTLA4 and ICOS, as a co-inhibitory signal leading to immune suppression.²
 - Expressed on antigen presenting cells and mesothelioma cell lines
 - High expression in 54% of epithelioid subtype of mesothelioma and uncommon in sarcomaotid subtypes.³

- 2. Castellanos JR et a;. Am J Clin Exp Immunol 2017;6:66-75.
- 3. Calabro L, et al. J Cell Physiol 2011;226:2595-600.

^{1.} Salaroglio et al. JTO 2019;44:1458-71.

Study design

LAG525X2101C is an open-label. Phase I/II study of cohorts with single-agent LAG525 or the combination of LAG525 and spartalizumab (NCT02460224; Figure 2).

Figure 2. LAG525X2101C Study Design

CR, complete response, PC, progressive disease, PR, pertial response, SC, stable disease. TNBC, triple-regative breast cancer. "The additional PR reported in a patient with mesothelioms after the data out-off is color coded as SO in this figure. N=KH exituable 20 patients (including 2 with mesothelioms and 1 with TNBC) were not evaluable due to postDaseline assessment not yet performed, discontinuation prior to first postDaseline assessment, or making tumor measurements.

Immune Checkpoints

- Salaroglio et al. demonstrated increase in
 - Treg and MDSC (granulocyte or macrophage derived) which is a negative predictor for PFS and OS
 - Increase in LAG3 and TIM3 expression on CD8 cells associated to negative OS.
 - MHC1 mutation in 59% of mesothelioma associated dendritic cells or antigen presenting cells.¹
- B7-H3:
 - A member of B7 family, which interacts with CD28 family molecules such as PD1, CD28, CTLA4 and ICOS, as a co-inhibitory signal leading to immune suppression.²
 - Expressed on antigen presenting cells and mesothelioma cell lines
 - High expression in 54% of epithelioid subtype of mesothelioma and uncommon in sarcomaotid subtypes.³

- 2. Castellanos JR et a;. Am J Clin Exp Immunol 2017;6:66-75.
- 3. Calabro L, et al. J Cell Physiol 2011;226:2595-600.

^{1.} Salaroglio et al. JTO 2019;44:1458-71.

TGF-Beta

- Exposure to chrysotile leads to activation of the MAPK/ERK pathway and thus p38, which in turn leads to increase in TGF-B1 expression and Treg infiltration and immune suppression.¹
- Loss of NF2 or other component of the Hippo pathway is common in mesothelioma which leads to over-expression and activation of TGFbeta 1 receptor and thus mesothelioma formation.^{2, 3}
- In part leads to infiltration of CD8+, CD4+ and FOXP3+/CD4+/CD25+ Treg into the tumour and thus immune suppression.⁴

- 1. Maeda M et al. Int J Oncol 2014;45:2522-32.
- 2. Cho JH et al. Mol cancer Ther 2018;17:2271-2284.
- 3. Fujii M et al. J Exp Med 2012;209:479-94.
- 4. Hegamns JP et al. Eur Resp J 2006;27:10866-95.

Conclusions

- With further understanding of the mutational and immune landscapes of mesothelioma:
 - Biology
 - Targets
 - Therapeutics.
- Mesothelioma may
 - A collection of different subtypes
 - Novel therapeutics should be moving forward based on biology and efficacy in preclinical models, particularly immune competent mouse models.
 - Novel clinical trial designs with international collaboration will be needed.

Thank you