Targeting mesothelioma with radiation and immunotherapy

Marc de Perrot, MD, MSc, FRCSC
Director, Toronto Mesothelioma Research Program
Professor of Surgery and Immunology, University of Toronto
Division of Thoracic Surgery
University Health Network
Toronto, Canada
Conflict of interest

- Bayer (speaker fees)
- Astra-Zeneca (Ad board)
Radiation in mesothelioma

• Although mesothelioma had traditionally been considered resistant to radiation, more recent evidence suggests the contrary
 – *In vitro*, epithelial mesothelioma cell lines are more sensitive to radiation than non-small cell lung cancer
 – Radiation can palliate chest pain in up to 60% of patients with mesothelioma
 – Adjuvant high dose hemithoracic radiation after surgery can improve local control
 – Induction accelerated hypofractionated hemithoracic radiation followed by surgery (SMART approach) provides encouraging results in epithelial mesothelioma
Palliative radiation with 20 Gy in 5 fractions

Data from palliative radiation suggests that total dose >40 Gy or doses >4 Gy/fraction provide the best response in mesothelioma.
Radiation doses

- Normofractionation ~ 2 Gy per fraction
- Hypofractionation ≥ 3 Gy per fraction
- Ablative radiation ≥ 8 Gy per fraction

These doses of radiation are enabled by technological innovation such intensity modulated radiation (IMRT), image guided techniques, etc.
Mechanisms of tumor regression after radiation

Tumor regression after radiation

- DNA damage by oxygen reactive species
- Activation of the immune system

Normofractionated radiation
Hypofractionated radiation (palliative and ablative)
SMART trial
Surgery for Mesothelioma
After Radiation Therapy

Study Schema

Histologically Proven, Previously Untreated Malignant Pleural Mesothelioma (cT1-3 N0 M0)
Baseline Investigations, Informed Consent

- Neoadjuvant Hemithoracic Intensity Modulated Radiotherapy (25 Gy/5 fx +/- concomitant 5 Gy boost over 1 week)

 1 week post-RT

 Extrapleural Pneumonectomy

 <26 weeks post-op

 - ypN0-1
 - Observation
 - ypN2
 - Adjuvant Chemotherapy
Impact of CD8+ Tumor Infiltrating Lymphocytes (TILs) on survival after SMART

![Graph showing survival rates for different TIL categories](image)

- Epithelioid CD8+ TILs >2%
- Epithelioid CD8+ TILs <2%
- Biphasic CD8+ TILs >2%
- Biphasic CD8+ TILs <2%

\[p = 0.0001 \]

Impact of PD-L1 expression on tumor cells (>1%) on survival after SMART

![Graph showing survival rates for different PD-L1 expression types](image)

- Red line: Epithelioid PD-L1 positive
- Gray line: Epithelioid PD-L1 negative
- Blue line: Biphasic PD-L1 negative
- Green line: Biphasic PD-L1 positive

$p = 0.0002$

Multivariate analysis of factors predicting survival after SMART

<table>
<thead>
<tr>
<th>Continuous variable</th>
<th>Patients # (total n=68)</th>
<th>P-value</th>
<th>Hazard ratio</th>
<th>Lower 95% CI</th>
<th>Upper 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8+ TILs >2%</td>
<td>33</td>
<td>0.02</td>
<td>0.47</td>
<td>0.25</td>
<td>0.89</td>
</tr>
<tr>
<td>Positive lymph nodes (N+)</td>
<td>42</td>
<td>0.03</td>
<td>1.92</td>
<td>1.05</td>
<td>3.51</td>
</tr>
<tr>
<td>Epithelioid histology</td>
<td>34</td>
<td>0.0004</td>
<td>0.3</td>
<td>0.16</td>
<td>0.59</td>
</tr>
<tr>
<td>PD-L1 positive cancer cells (>1%)</td>
<td>17</td>
<td>0.9</td>
<td>0.94</td>
<td>0.43</td>
<td>2.06</td>
</tr>
<tr>
<td>PD-1 cells >0.3%</td>
<td>32</td>
<td>0.8</td>
<td>0.96</td>
<td>0.71</td>
<td>1.32</td>
</tr>
<tr>
<td>Male gender</td>
<td>55</td>
<td>0.2</td>
<td>1.79</td>
<td>0.79</td>
<td>4.06</td>
</tr>
</tbody>
</table>

Mice model of local accelerated hypofractionated radiation

Local Radiotherapy (LRT)
Accelerated hypofractionated non-ablative radiation in a mice model of mesothelioma
Local RT induces upregulation of tumor infiltrating T cells

De La Maza/ de Perrot et al Clin Cancer Res 2017 Sep 15
Kinetics of T cell recruitment after LRT

Mikihiro Kohno (manuscript in preparation)
CD8+ lymphocytes infiltrating AE17-OVA tumor are OVA specific

Tumor specific CD8+ T cells in AE17-OVA tumor. Radiation vs no treatment

* p = 0.07

De La Maza/ de Perrot et al Clin Cancer Res 2017 Sep 15
Benefit of radiation (3x 5Gy) is reduced after T cells depletion
Selective depletion of Foxp3\(^+\) Tregs with LRT demonstrated synergistic antitumor effects

Mikihiro Kohno (unpublished data)
Upregulation of regulatory T cells after LRT

- Treg characterized by CD4+CD25+FoxP3+
- Combination of LRT with CTLA4 inhibitor prevent the upregulation of Treg after radiation

Wu/ de Perrot et al Oncotarget 2015 March 8
Combining CTLA-4 blockade with LRT improves local control
Impact CTLA-4 blockade with accelerated hypofractionated radiation (3x5Gy)

Abscopal effect

Secondary tumor growth

AB12
First inj

AB12
Second inj

No Rx

LRT

LRT+
CTLA-4

4 Ab

3/9 tumors rejected

Wu/ de Perrot et al Oncotarget 2015 March 8
Tumor growth was significantly reduced in mice treated with LRT and radical surgery.
CD4 and CD8 lymphocyte depletion completely abrogates tumor protection
Key steps to a successful immune response after non-ablative hypofractionated radiation and immunotherapy

1. Generate an immune response with new T cell clones
 - Adequate mutational burden, functional dendritic cells

2. Overcome the immunosuppressive tumor microenvironment
 - Tumor volume and Treg are major limiting factors

3. Overcome the mechanism of resistance from tumor cells
 - Tumor cells can upregulate of PD-L1, SerpinB9, GITRL as mechanisms of resistance to the radiation induced immune response

Adapted from Huang et al. Nature 2017; 545: 60-65
Conclusions

- Mesothelioma are sensitive to radiation, particularly the epithelial subtypes

- Accelerated hypofractionated radiation can activate the immune system with upregulation T cells in the tumor

- The immediate benefit of accelerated radiation is related to CD8+ T cells, while the long term benefit is predominantly driven by CD4+ T cells

- Surgery can optimize the benefit of radiation and immune activation by reducing the tumor antigen load

- Non-ablative hypofractionated radiation combined with surgery can provide an excellent platform for immunotherapy in mesothelioma
Acknowledgement

Thoracic Surgery
• Laura Donahoe
• Shaf Keshavjee
• Kazu Yasufuku
• Kasia Czarnecka

Radiation Oncology
• John Cho
• Andrew Hope

Medical Oncology
• Penny Bradbury
• Geoff Liu
• Natasha Leighl

Pathology
• Ming Tsao
• Michael Cabanero
• Prodipto Pal

Thoracic Surgery Research Laboratory
• Licun Wu
• Yidan Zhao
• Hanna Zhu
• Mei-Lin James Chan
• Mikihiro Kohno
• Junichi Murakami
• Masaki Anraku
• Tetsuzo Tagawa
• Matthew Wu
• Luis De La Maza Borja

Collaboration
Dept of Immunology
• Tania Watts
• Pam Ohashi
• Marcus Butler
• Naoto Hirano
• Li Zhang

University of Zurich
• Emanuela Folley-Bosco

University of Lausanne
• Michele De Palma

University of Fribourg
• Beat Schwaller
Thank you