

Targeting mesothelioma with radiation and immunotherapy

Marc de Perrot, MD, MSc, FRCSC

Director, Toronto Mesothelioma Research Program Professor of Surgery and Immunology, University of Toronto Division of Thoracic Surgery University Health Network

Toronto, Canada

Conflict of interest

- Bayer (speaker fees)
- Astra-Zeneca (Ad board)

Radiation in mesothelioma

- Although mesothelioma had traditionally been considered resistant to radiation, more recent evidence suggests the contrary
 - In vitro, epithelial mesothelioma cell lines are more sensitive to radiation than non-small cell lung cancer
 - Radiation can palliate chest pain in up to 60% of patients with mesothelioma
 - Adjuvant high dose hemithoracic radiation after surgery can improve local control
 - Induction accelerated hypofractionated hemithoracic radiation followed by surgery (SMART approach) provides encouraging results in epithelial mesothelioma

Palliative radiation with 20 Gy in 5 fractions

Data from palliative radiation suggests that total dose >40 Gy \underline{or} doses >4Gy/ fraction provide the best response in mesothelioma

Radiation doses

- Normofractionation ~ 2 Gy per fraction
- Hypofractionation $\geq 3 \text{ Gy per fraction} \\ + \text{Ablative radiation} \geq 8 \text{ Gy per fraction} \\ \end{bmatrix} \#$

These doses of radiation are enabled by technological innovation such intensity modulated radiation (IMRT), image guided techniques. etc

Mechanisms of tumor regression after radiation

Normofractionated radiation

Hypofractionated radiation (palliative and ablative)

SMART trial

<u>Surgery for Mesothelioma</u> <u>After Radiation Therapy</u>

Study Schema

Histologically Proven, Previously Untreated Malignant Pleural Mesothelioma (cT1-3 N0 M0) Baseline Investigations, Informed Consent

Impact of CD8+ Tumor Infiltrating Lymphocytes (TILs) on survival after SMART

de Perrot et al. J Thorac Cardiovasc Surg (in press)

Impact of PD-L1 expression on tumor cells (>1%) on survival after SMART

de Perrot et al. J Thorac Cardiovasc Surg (in press)

Multivariate analysis of factors predicting survival after SMART

	Continuous variable	Patients # (total n=68)	P-value	Hazard ratio	Lower 95% CI	Upper 95% CI
	CD8+ TILs >2%	33	0.02	0.47	0.25	0.89
	Positive lymph nodes (N+)	42	0.03	1.92	1.05	3.51
	Epithelioid histology	34	0.0004	0.3	0.16	0.59
	PD-L1 positive cancer cells (>1%)	17	0.9	0.94	0.43	2.06
	PD-1 cells >0.3%	32	0.8	0.96	0.71	1.32
	Male gender	55	0.2	1.79	0.79	4.06

de Perrot et al. J Thorac Cardiovasc Surg (in press)

Mice model of local accelerated hypofractionated radiation

Local Radiotherapy (LRT)

Accelerated hypofractionated non-ablative radiation in a mice model of mesothelioma

Local RT induces upregulation of tumor infiltrating T cells

2 Days After LRT

7 Days After LRT

12 Days After LRT

CD3+ CD8+

15Gy

NoRx

De La Maza/ de Perrot et al Clin Cancer Res 2017 Sep 15

Kinetics of T cell recruitment after LRT

Mikihiro Kohno (manuscript in preparation)

CD8+ lymphocytes infiltrating AE17-OVA tumor are OVA specific

De La Maza/ de Perrot et al Clin Cancer Res 2017 Sep 15

Benefit of radiation (3x 5Gy) is reduced after T cells depletion

De La Maza/ de Perrot et al. Clin Cancer Res 2017;23:5502-13

Selective depletion of Foxp3⁺ Tregs with LRT demonstrated synergistic antitumor effects

Upregulation of regulatory T cells after LRT

- Treg characterized by CD4+CD25+FoxP3+
- Combination of LRT with CTLA4 inhibitor prevent the upregulation of Treg after radiation

Wu/ de Perrot et al Oncotarget 2015 March 8

Combining CTLA-4 blockade with LRT improves local control

De La Maza/ de Perrot et al Clin Cancer Res 2017;23:5502-13

Impact CTLA-4 blockade with accelerated hypofractionated radiation (3x5Gy) Abscopal effect

days after tumor challenge

Secondary tumor growth

Wu/ de Perrot et al Oncotarget 2015 March 8

Tumor growth was significantly reduced in mice treated with LRT and radical surgery

CD4 and CD8 lymphocyte depletion completely abrogates tumor protection

De La Maza/ de Perrot et al Clin Cancer Res 2017 Sep 15

Key steps to a successful immune response after non-ablative hypofractionated radiation and immunotherapy

- 1. Generate an immune response with new T cell clones
 - Adequate mutational burden, functional dendritic cells
- 2. Overcome the immunosuppressive tumor microenvironment
 - Tumor volume and Treg are major limiting factors
- 3. Overcome the mechanism of resistance from tumor cells
 - Tumor cells can upregulate of PD-L1, SerpinB9, GITRL as mechanisms of resistance to the radiation induced immune

Conclusions

- Mesothelioma are sensitive to radiation, particularly the epithelial subtypes
- Accelerated hypofractionated radiation can activate the immune system with upregulation T cells in the tumor
- The immediate benefit of accelerated radiation is related to CD8+ T cells, while the long term benefit is predominantly driven by CD4+ T cells
- Surgery can optimize the benefit of radiation and immune activation by reducing the tumor antigen load
- Non-ablative hypofractionated radiation combined with surgery can provide an excellent platform for immunotherapy in mesothelioma

Acknowledgement

Thoracic Surgery

- Laura Donahoe •
- Shaf Keshavjee ٠
- Kazu Yasufuku •
- Kasia Czarnecka •

Radiation Oncology

- John Cho ٠
- Andrew Hope ٠

Medical Oncology

- Penny Bradbury ٠
- Geoff Liu •
- Natasha Leighl •

Pathology

- Ming Tsao ٠
- Michael Cabanero •
- Prodipto Pal ٠

Thoracic Surgery Research Laboratory

- Licun Wu ٠
- Yidan Zhao ٠
- Hanna Zhu ٠
- Mei-Lin James Chan ۲
- Mikihiro Kohno ٠
- Junichi Murakami ٠
- Masaki Anraku ٠
- Tetsuzo Tagawa ۲
- Matthew Wu ٠

Swiss National Science Foundation

Luis De La Maza Borja ٠

Collaboration

Dept of Immunology

- Tania Watts
- Pam Ohashi •
- Marcus Butler •
- Naoto Hirano •
- Li Zhang •

University of Zurich

Emanuela Folley-Bosco

University of Lausanne

Michele De Palma •

University of Fribourg

Beat Schwaller •

Mesothelioma Applied[®]

Research Foundation

Toronto General & Western WHAT Hospital Foundation **QUHN** CAN DO

Thank you